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Lecture 21: Texture

Initialize

‡ Spell check off, plot options, etc..

Off@General::spell1D;

SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;
SetOptions@Plot, ImageSize Ø SmallD;
SetOptions@DensityPlot, ImageSize Ø Small, ColorFunction Ø GrayLevelD;
nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =

H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

‡ Histogram

histogram@image_, nbin_D := Module@8histx<,
Needs@"Statistics`DataManipulation`"D;
histx = BinCounts@Flatten@imageD, 80, nbin - 1, 1<D;
Return@N@histx ê Plus üü histxDD;

D;

‡ Entropy

entropy@probdist_D := Plus üü HIf@Ò == 0, 0, -Ò Log@2, ÒDD & êü probdistL

Outline



Outline

Last time
Surface material:

Surface properties,  color, transparency, etc..

Reflectance & lightness constancy

Perception of shiny materials

Shiny or matte?
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From: Fleming RW, Dror RO, Adelson EH (2003) Real-world illumination and the perception of surface reflectance 
properties. J Vis 3:347-368.

A major invariance problem. 

Note in the above figure from Fleming et al. that the simple model of illumination with just one light source is not as 
effective as rendering in a realistic environment (Uffizi). But it isn't complexity per se, because white noise isn't good for 
conveying the underlying surface shininess.

One of the main conclusions is that the presence of edges and bright points important, rather than recognizable reflected 
objects.

http://journalofvision.org/3/5/3/article.aspx

For background on  HDR illumination probe measurements, see: http://www.debevec.org/probes/

And on the Uffizi probe see too:

http : êê commons.wikimedia.org êwiki êImage : HDR_example _ - _exposure.jpeg

‡ Motion and shininess

http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/MatteOrShiny.html

Today
Generative models for texture classes

The "generic" natural image model

Is human vision "tuned" to natural image statistics?

Generative models for texture
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Generative models for texture

‡ Databases

Types of textures. Deterministic, stochastic. 

http://www.ux.uis.no/~tranden/brodatz.html

http://sipi.usc.edu/database/database.cgi?volume=textures

‡ Text texture example from Javier Portilla and Eero Simoncelli

http://www.cns.nyu.edu/~eero/texture/

We'll focus on stochastic textures because of their close relationship to many textures typically encountered in nature.

Imagine an image ensemble consisting of all 256x256 images of "grass". This set is unimaginably large, yet there is a set 
of characteristic features that are common to all these images. Imagine we have an algorithm that from knowledge of these 
features generate random image samples from this imaginary  ensemble. One kind of algorithm takes a white noise image 
as input , and produce as output image samples that resemble grass. The white noise input behaves like fair roll of a die.

We show several methods for generating textures.

And then we give an outline of one method for discovering the features from a small number of sample images.
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We'll focus on stochastic textures because of their close relationship to many textures typically encountered in nature.

Imagine an image ensemble consisting of all 256x256 images of "grass". This set is unimaginably large, yet there is a set 
of characteristic features that are common to all these images. Imagine we have an algorithm that from knowledge of these 
features generate random image samples from this imaginary  ensemble. One kind of algorithm takes a white noise image 
as input , and produce as output image samples that resemble grass. The white noise input behaves like fair roll of a die.

We show several methods for generating textures.

And then we give an outline of one method for discovering the features from a small number of sample images.

There have been a number of studies that seek to extract the essential features of a texture class (such as "grass" or "fur" or 
"all natural images"...) and then use these to build a texture synthesizer that produces new samples from the same texture 
class. A generative model provides a test of the extent to which the model has capture the essential statistics or features. 
And as we show at the end of this notebook, a generative model can also be used to text theories of the kinds of informa-
tion that human vision has about an image ensemble.

First-order intensity statistics. One of the simplest ways to do this would be to take what you've learned about intensity 
histograms, and then write a program that would produce new images by drawing pixel intensities from your model 
histogram, assuming each pixel is independent of the others. In other words, make random draws without consideration of 
any other pixel values.

Make a random image generator that draws samples from an intensity histogram measured from an 
natural image

Random Fractals
Second-order intensity statistics. Recall that one way to characterize the second-order statistics of a natural image is in 
terms of its auto-correlation function. And also recall that the Fourier transform of the autocorrelation function is the 
spatial power spectrum of an image.

Natural images tend to have spatial frequency power spectra that fall off linearly with log spatial frequency (Simoncelli 
and Olshausen). When the slope of the fall-off is within a certain range, such images are called random fractals. The slope 
is related to the fractal dimension.

Random fractals can be characterized by the fractal dimension D (3<D<4) and amplitude spectrum, 1/( fx2 + fy2)^(4-D). 
The amplitude spectrum is thus a straight line when plotted against frequency in log-log coordinates. The condition If[ ] is 
used to include a fudge term (1/(2)^(q)) to prevent blow up near zero in the Module[ ] routine below.

size = 256;

Random fractals have been suggested as good statistical models for the amplitude spectra natural images. Here is one way 
of generating them.
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D1 = 3.5;
q = 4 - D1;
LogLogPlot@If@Hi ¹≠ 0 »» j ¹≠ 0L, 1 ê Hi * i + 0 * 0L^HqL, 1 ê H2L^HqLD,
8i, .1, size ê 2 - 1<, ImageSize Ø SmallD
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‡ Here is a function to make a low-pass filter with fractal dimension D. (D, here should be between 3 

and 4). Note that we first make the filter centered in the middle, and then adjust it so that it is 

symmetric with respect to the four corners.

fractalfilter2[D_,size_] :=
Module[ {q,i,j,mat},

q = 4 - D;
mat = Table[If[(i != 0 || j!= 0),

1.0/(i^2 + j^2)^q, 1.0/(2)^(q)],
{i,-size/2,(size/2) - 1},{j,-size/2,(size/2) - 1}];
Return[mat];
];

ft = Table@N@p H2 RandomReal@D - 1LD, 8i, 1, size<, 8j, 1, size<D;
ft = Fourier@ftD; randomphase = Arg@ftD;
randomspectrum = Abs@ftD;
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ArrayPlot@fractalfilterarray = fractalfilter2@3.5, sizeD,
Mesh Ø FalseD

ListLogLogPlot@
Table@RotateLeft@fractalfilterarray, 8size ê 2 + 1, size ê 2 + 1<D@@i, iDD,
8i, 1, size ê 2<D, ImageSize Ø SmallD
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‡ Here is a random fractal image, with D = 3.5

ArrayPlot[Chop[
InverseFourier[RotateLeft[fractalfilterarray,{size/2,size/2}] randomspectrum Exp[I randomphase]]],
Mesh->False]

Texture synthesis using image pyramids
Samples from the fractal process modeled above are multi-variate Gaussian. A major limitation of Gaussian models is that 
they fail to capture phase structure, and in particular edges. 

In the class reading, Heeger and Bergen (pdf) show how to use steerable pyramids to generate novel textures from statisti-
cal "summaries" obtained from sample  textures. They start of with a model spatial filters that are selective for spatial 
frequency, orientation, and phase. The use of orientation filters captures oriented features of textures, and phase captures 
edges.

The filter model can be thought of as a model of the spatial filtering properties of V1 neurons. Then given a sample of a 
texture, measure the histograms for each of the filter outputs. The assumption is that these histograms summarize the 
essential features of the texture. Thus, given the histogram statistics, the goal of the algorithm is to produce new texture 
samples that have the same statistics but otherwise are random.  One way to do this is to start of with a white noise sample 
(i.i.d. meaning each pixel is indendently drawn from an identical distribution, such as a uniform or gaussian distribution), 
and then iteratively adjust the noise sample to have the same histograms as learned from the original natural texture 
sample.

Texture synthesis using Markov Random Field models & Gibbs 
sampling

This next section shows another way to model textures that are piece-wise constant. The method is also interesting 
because, in theory, it allows us to generate samples from specified high-dimensonal joint probability functions.

‡ Modeling textures using Markov Random Fields
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‡

Modeling textures using Markov Random Fields

‡ Sampling from textures using local updates

The Gibbs Sampler

‡ Set up image arrays and useful functions

size = 32; T0 = 1.`; ngray = 16.`;
brown = N@Table@RandomReal@81, ngray<D, 8i, 1, size<, 8i, 1, size<DD;
next@x_D := Mod@x, sizeD + 1;

previous@x_D := Mod@x - 2, sizeD + 1;
Plus üü Flatten@brownD

Length@Flatten@brownDD
;
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‡ Gaussian potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L

f@x_, s_, n_D := N@Hx ê sL^2D;
s0 = 1.25; n0 = 2;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D
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‡ Ising potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L

f@x_, s_, n_D := If@Abs@xD < .5, 0, 1D;

H*f@x_,s_,n_D:=N@HxêsL^2D;*L
s0 = 1.; n0 = 5;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D
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‡ Geman & Geman potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L

f@x_, s_, n_D := N@Sqrt@Abs@x ê sD^n ê H1 + Abs@x ê sD^nLDD;

H*f@x_,s_,n_D:=N@HxêsL^2D;*L
s0 = .25; n0 = 2;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D
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‡ Define the potential function using nearest-neighbor pair-wise cliques

Clear@gibbspotential, gibbsdraw, trD;
gibbspotential@x_, avg_, T_D :=

N@
Exp@
-Hf@x - avg@@1DD, s0, n0D + f@x - avg@@2DD, s0, n0D +

f@x - avg@@3DD, s0, n0D + f@x - avg@@4DD, s0, n0DL ê TDD;

‡ Define a function to draw a single pixel gray-level sample from a conditional distribution determined 

by pixels in neighborhood

gibbsdraw@avg_, T_D :=
Module@8<, temp = Table@gibbspotential@x + 1, avg, TD, 8x, 0, ngray - 1<D;
temp2 = FoldList@Plus, tempP1T, tempD;
temp10 = Table@8temp2PiT, i - 1<, 8i, 1, Dimensions@temp2DP1T<D;
tr = Interpolation@temp10, InterpolationOrder Ø 0D;
maxtemp = Max@temp2D; mintemp = Min@temp2D;
ri = RandomReal@8mintemp, maxtemp<D; x = Floor@tr@riDD;
Return@8x, temp2<D;D;
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‡ "Drawing" a texture sample

gd = ArrayPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<D;
Dynamic@gdD

gd

For@iter = 1, iter § 10, iter++, T = 0.25`;
For@j1 = 1, j1 § size size, j1++, 8i, j< = RandomInteger@81, size<, 2D;
avg = 8brownPnext@iD, jT, brownPi, next@jDT, brownPi, previous@jDT,

brownPprevious@iD, jT<; brownPi, jT = gibbsdraw@avg, TDP1T;D;
gd = ArrayPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<DD

Was it a true sample? Drawing true samples means that we have to allow sufficient iterations so that we end up with 
images whose frequency corresponds to the model. How long is long enough?

Finding modes

‡ Define annealing schedule

anneal@iter_, T0_, a_D := T0 * H1 ê aL ê H1 ê a + Log@iterDL;
Plot@anneal@iter, T0, 1D, 8iter, 1, 20<, PlotRange Ø 80, 2<D
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‡ "Drawing" a texture sample with annealing

gd2 = ArrayPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<D;
Dynamic@gd2D
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gd2

For@iter = 1, iter § 10, iter++, T = anneal@iter, T0, 1D;
For@j1 = 1, j1 § size size, j1++, 8i, j< = RandomInteger@81, size<, 2D;
avg = 8brownPnext@iD, jT, brownPi, next@jDT, brownPi, previous@jDT,

brownPprevious@iD, jT<; brownPi, jT = gibbsdraw@avg, TDP1T;D;
gd2 = ArrayPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<DD;

Learning distributions on textures
A fundamental problem in learning image statistics that are sufficient for generalization and random synthesis is that 
images have enormously high dimensionality compared with the size of a reasonable database. One method to deal with 
this is to seek out probability distributions that have the same statistics (i.e. a small finite set of statistical features) as those 
measured from an available database (e.g. "1000 pictures of grass"), but are minimally constraining in other dimensions. 
Suppose one has a collection of probability distributions that all have the same statistics. At one extreme, the original 
database itself defines a distribution--a random draw is just a pick of one of the pictures. But this distribution has no 
"creativity" and leaves out a huge set of grass images not in the database. However, at the other extreme, is the maximum 
entropy distribution (Cover and Thomas, 1991).

Minimax entropy learning: Zhu et al.
This section provides a brief outline of work by Zhu, S. C., Wu, Y., & Mumford, D. (1997). Minimax Entropy Principle 
and Its Applications to Texture Modeling. Neural Computation, 9(8), 1627-1660.

See the References for other work on texture learning and modeling.

‡ Maximum entropy to determine pM(I) which matches the measured statistics, but is “least committal”

Suppose we have a set of filters fi. An example would be a simple difference filter such as a discrete approximation to a 
“2operator.

Given a collection of image samples I, measure the average values of the filter outputs, i.e. texture statistics, yi.

An ideal of the texture pMwould have the same statistics as the true underlying model model, p(I) :

But there is an enormous family of possible probabilty distributions that could all have the same statistics. Entropy is a 
measure of uncertainty or "chaos", so if we want a texture

model that has maximum freedom or creativity, we can model this constraint by looking for the distribution that has the 
highest entropy, but with the required statistics. 

Zhu et al.'s method built on a a standard method in information theory (Cover and Thomas, 1991) to obtain the maximum 
entropy distribution for a given set of measured statistics. The idea was to "learn" the form of the potentials li(as in the 
Ising potential assumed above). 
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But there is an enormous family of possible probabilty distributions that could all have the same statistics. Entropy is a 
measure of uncertainty or "chaos", so if we want a texture

model that has maximum freedom or creativity, we can model this constraint by looking for the distribution that has the 
highest entropy, but with the required statistics. 

Zhu et al.'s method built on a a standard method in information theory (Cover and Thomas, 1991) to obtain the maximum 
entropy distribution for a given set of measured statistics. The idea was to "learn" the form of the potentials li(as in the 
Ising potential assumed above). 

‡ Minimum entropy to determine statistics/features

But what features (i.e. filters)  are the most important? It will depend on the texture and the initial choice of feature set. 
Suppose one has a filter set modeled after V1 spatial filters. Some filters may be much more important than others in 
capturing the essential statistics. Assume that  p(I) is the true model that has all of the essential statistics. This could be 
really complex, and we don't know for sure what filters to include. So Zhu et al.'s idea was to do something analogous to a 
Taylor series expansion, and order filters so that as one added more filters to pM , it gets us closer to the true distribution  
pHIL. To do this, one needs a measure of "distance" between two distributions. We've already learned about d' in a com-
pletely different context. A more general measure is Kullbach-Leibler divergence (wiki): D(p(I) | pM ). Zhu et al. showed 
that choosing filters that minimize the entropy of pM (I), they could

move the distribution in the direction towards p(I).
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‡ Sample from generic prior

‡ Sample from class-specific prior

Song Chun Zhu, Zhu & Mumford, IEEE PAMI, Zhu, Wu, Mumford, 1997

Original texture

Synthesized sample using Gibbs sampler

Nonparametric sampling
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Nonparametric sampling
Shannon's approach to synthesizing English (Shannon, 1948; 1951).

Efros' application to textures. 

Instead of first estimating the local MRF distributions (conditional value of a pixel given its neighbors), one can imagine 
starting off with a small seed, and then querying the original sample image to find similar neighborhoods to constrain how 
to make the draws. See :

http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html
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